Skip to main content

Formulation and Evaluation of Gastroretentive Drug Delivery System of Cefuroxime Axetil

 

Clinical courses

Magazine Home


DEC 2014 ARTICLE LIST >>

PharmaTutor (December- 2014)

 

ISSN: 2347 - 7881
(Volume 2, Issue 12)

 

Received On: 16/10/2014; Accepted On: 24/10/2014; Published On: 01/12/2014

 

AUTHORS: Balay Ragini*, A.Pavani, R.Raja Reddy
Malla Reddy Pharmacy College,
Maisammaguda(via-hakimpet), Secunderabad, Telengana. india
ragini.balay@gmail.com

 

ABSTRACT: Cefuroxime Axetil is a second generation antibacterial belongs to Cephalosporin Group. The drug undergoes rapid metabolism in intestinal mucosa due to change in pH Environment and hence has decreased oral bioavailability. The aim of present investigation is to increase the gastric residence time by preparing gastroretentive tablets here by improving bioavailability of Cefuroxime Axetil. A simple UV spectrophotometric method has been employed for the estimation of Cefuroxime Axetil at 281 nm. A floating drug delivery system (FDDS) was developed using gas-forming agents, like sodium bicarbonate, sodium alginate and hydrocolloids like hydroxyl propyl methyl cellulose (HPMC) and guggul. The prepared tablets were evaluated in terms of their precompression parameters, physical characteristics, In vitro release, buoyancy lag-time and swelling index. The formulations were optimized for the different grades of HPMC, and its concentrations and combinations. The results of the In vitro release studies showed that the optimized formulation F3 could sustain drug release of 92% and remain buoyant for 10h. The optimized formulation was subjected to various kinetic release investigations and it was found that the mechanism of drug release was predominately Higuhci with non fickian diffusion. Finally the tablets formulations found to be economical and may overcome the draw backs associated with the drug during its absorption.

 

How to cite this article: R Balay, A Pavani, RR Reddy; Formulation and Evaluation of Gastroretentive Drug Delivery System of Cefuroxime Axetil; PharmaTutor; 2014; 2(12); 114-122

 

[ABSTRACT WITH CITATION]   [VIEW AS HTML]