ABOUT AUTHORS: Vinit Raj*, Amit Rai, Jitendra Kumar Rawat
Department of Pharmaceutical Sciences,
Babasaheb Bhimrao Ambedkar University (A Central University),
Vidya Vihar, Raebreli Road, Lucknow-226025 (U.P.), India raj.vinit24@gmail.com
ABSTRACT
A series of novel 1, 3, 4-thiadiazole derivatives were designed keeping in view the structural requirement of pharmacophore and Quantitative structure activity relationship (QSAR) and evaluated in silico anticonvulsant activity. Docking procedures allow virtually screening a database of compounds and predict the strongest binder based on various scoring functions. In the docking study, the most active compounds of the series were, VR 2, VR 3 and VR 4 exhibited good binding properties. Result reveals that the protein-ligand interaction energy of derivatives VR 2, VR 3 and VR 4 were -7.08 kcal/mol, -6.64 kcal/mol and -7.42 kcal/mol respectively, which is slightly higher than the standard anticonvulsant phenytoin drug as -6.03 kcal/mol, so that the derivatives have satisfactory affinity with established convulsant receptor namely Na/H exchanger. A computational study was also carried out including prediction of pharmacokinetic properties, toxicity and bioactivity studies. The percentage of absorption (%ABS) was calculated and observed that all titled compounds exhibited a better %ABS ranging 92.66, 85.81, 90.07 and 86.98, respectively and compared than standard Phenytoin drug as %ABS 88.92. Although VR 1 had slightly lesser protein affinity, its other pharmacological parameters were same like other screened compounds. The above observation suggested that these compounds would serve as better lead compound for anticonvulsant screening for future drug design perspective.
About Authors: S. Ramya Silpa
Department of Pharmacology,
Balaji College of Pharmacy, Anantapur, AP, India. shilpasankarapu@gmail.com
Abstract:
Prostaglandins are potent bioactive lipid messengers synthesized from arachidonic acid mediated by enzyme COX. Prostaglandins (PGs) play a key role in the initiation of the inflammatory response. Their biosynthesis is significantly increased in inflamed tissue, and they contribute to the development of the cardinal signs of acute inflammation. Although the proinflammatory properties of individual PGs during the acute inflammatory response are well established, their role in the resolution of inflammation is more controversial.
ABOUT AUTHORS: Meenu Sharma*, Saroj jain
Department of Pharmaceutics, Hindu college of pharmacy
Panchayat Bhawan, Gohana Road, Sonipat (Haryana) meenu99sharma@gmail.com
ABSTRACT
Amongst various carriers explored for target oriented drug delivery, vesicular, microparticulate and cellular carriers meet several criteria rendering them useful in clinical applications. Lymphocytes, leukocytes, platelets, granulocytes and erythrocytes have been proposed as a cellular carriers. Erythrocytes, also known as red blood cells, and have been the most extensively investigated and found to possess great potential in novel drug delivery. The biocompatibility, non- pathogenicity, non-immunogenicity and biodegradability make them unique and useful carriers. The prime function of these RBCs is to transport gases for respiratory processes. Carrier erythrocytes are prepared by collecting blood sample from the organism of interest and separating erythrocytes from plasma. By using various methods the cells are broken and the drug is entrapped into the erythrocytes, finally they are resealed and the resultant carriers are then called "resealed erythrocytes". Erythrocytes have been proposed as a carriers for a wide range of bioactive components including drugs enzymes, pesticides, DNA molecules and others.
ABOUT AUTHORS: S.O. Pratap1,2, Ruchi Gaur3, R.Stephan4, J.L bhatt3, C.R. Pillai1, Usha Devi1 1Department of Parasitology, Malaria Research Center, New Delhi 2Department of Biotechnology, SR Group of Institutions, Jhansi, UP 3School of Life Science, ITM University Gwalior, MP 4Department of Botany, Government P.G. College Ariyalur, Tamilnadu, India dixitshivom@gmail.com
ABSTRACT
The natural products are important source of biologically active compounds having potential for developing a novel malaria drug. Malaria is one of the most important infectious vector born parasitic disease caused by Coccidian protozoan parasite of genus Plasmodium carried out by mosquito, invade red blood cells. Malaria is thousand times more complex than any disease. In the current study, a natural ingredient of herb; Dhatura Inoxia is analyzed, for its anti-malarial activity by preparing crude extract of water and ethanol, analyzed on schizont stage of plasmodial life cycle against two Chloroquine strains: sensitive and resistant of Plasmodium falciparum isolates. The results revealed that IC50 values of crude water extract was recorded as; 71± 1.41µg/ml and 105±7.07 while as the ethanol crude extract produced IC50 concentrates: 52±3.53 µg/ml and 59.5± 70 µg/ml against sensitive and resistant P. f. isolates, respectively. The results showed that this herb plant possess significant antiplasmodial activity in terms of IC50 as recorded in this study.