Review Article

Mini-Stroke (TIA): A Review

V. Sravanthi*1, Mayure vijay kumar1, Donthineni Kalyan2, G.J.Finny1, C.P.Meher1
1Department of pharmaceutical chemistry, Maheshwara College of Pharmacy, Patancheru, Hyderabad, Andhra Pradesh.
2Department of Pharmaceutical Analysis, Saraswathi College of Pharmaceutical Sciences,
*v.sravanthi27@gmail.com

ABSTRACT
TIA stands for transient ischemic attack, is a temporary blockage of blood flow in the brain that causes stroke symptoms. A transient ischemic attack is often called a mini-stroke. It is considered a warning sign that a more serious stroke will happen in the future. They may include weakness on one side of the body, dizziness, blurred vision, confusion, and speech problems. A TIA is a medical emergency. Following the below words cover about transient ischemic attacks (TIA), medication, prevention, diagnosing etc.

Keywords: Mini-Stroke, Transient ischemic attack, lower cholesterol

INTRODUCTION
Transient ischemic attack (TIA) is often labeled “mini-stroke” it is more accurately characterized as a “warning stroke,” a warning you should take very seriously. Ischemia results to the transient episode of neurogic dysfunction either by focal brain or spinal cord. Symptoms of TIAs preferred as contra lateral paralysis, sudden weakness or numbness etc., it also causes a sudden dimming or loss of vision, aphasia, slurred speech and mental confusion. But it lasts for less than 24hrs. TIA’s relates to the strokes which frequently referred as “mini-stroke”. Brain injury may be the chance with the presence of TIAs. [1,2] A silent stroke differs from a TIA in that there are no immediately observable symptoms. A silent stroke often occurs before or after a TIA or major stroke. [3]

MEDICATION

ASPIRIN + DIPYRIDAMOLE [4]:

<table>
<thead>
<tr>
<th>S.NO</th>
<th>STAGE</th>
<th>DRUG</th>
<th>CATEGORY</th>
<th>SIDE EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>primary</td>
<td>ASPIRIN + dipyridamole (combination used for 2 years)</td>
<td>anti-platelet</td>
<td>Dipyridamole: headaches ,dizziness, nausea</td>
</tr>
<tr>
<td>2</td>
<td>secondary</td>
<td>Aspirin: (reduce TIA by 25%)</td>
<td>anti-platelet</td>
<td>Aspirin: stomach irritation, indigestion ,nausea</td>
</tr>
</tbody>
</table>

CLOPIDOGREL [4]:

<table>
<thead>
<tr>
<th>S.NO</th>
<th>DRUG</th>
<th>USED</th>
<th>CATEGORY</th>
<th>SIDE EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLOPIDOGREL</td>
<td>severe side effects from taking aspirin</td>
<td>Antiplatelet</td>
<td>Diarrhoea ,Indigestion, Bruising, Bleeding</td>
</tr>
</tbody>
</table>

How to cite this article: V Sravanthi, VK Mayure, D Kalyan, GJ Finny, CP Meher; Mini-Stroke (TIA): A Review; PharmaTutor; 2014; 2(8); 87-94
TICLOPIDINE [4]:

<table>
<thead>
<tr>
<th>S.NO</th>
<th>DRUG</th>
<th>USED</th>
<th>CATEGORY</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TICLOPIDINE</td>
<td>Used for patients who cannot tolerate or do not respond to aspirin therapy.</td>
<td>Second-line Antiplatelet</td>
<td>Alternative to clopidogrel</td>
</tr>
</tbody>
</table>

ANTI-COAGULANT MEDICATION [4]:

WARFARIN:

<table>
<thead>
<tr>
<th>S.NO</th>
<th>DRUG</th>
<th>DESCRIPTION</th>
<th>CATEGORY</th>
<th>SIDE EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Warfarin</td>
<td>Need regular (INR) tests.</td>
<td>Anti-coagulant</td>
<td>Bleeding, blood in your vomit, coughing up blood, unusual headaches</td>
</tr>
</tbody>
</table>

Medication options for secondary prevention of ischemic stroke: [4]

CARDIO-EMBOLIC:

<table>
<thead>
<tr>
<th>DRUG</th>
<th>DOSE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>5 mg oral daily</td>
<td>For atrial fibrillation titrate INR to 2-3</td>
</tr>
<tr>
<td>Aspirin</td>
<td>325 mg oral daily</td>
<td>Only appropriate if warfarin contraindicated</td>
</tr>
</tbody>
</table>

NON-CARDIOEMBOLIC:

<table>
<thead>
<tr>
<th>DRUG</th>
<th>DOSE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin/ ER dipyridamole</td>
<td>25mg / 200mg oral daily</td>
<td>Headache is common</td>
</tr>
<tr>
<td>Clopidigrel</td>
<td>75mg oral daily</td>
<td>Preferred agent for aspirin allergy</td>
</tr>
<tr>
<td>Aspirin</td>
<td>50-325 mg oral daily</td>
<td>Least expensive antiplatelet agent</td>
</tr>
</tbody>
</table>

BLOOD PRESSURE MEDICATION [4]:

CHOLESTEROL MEDICATION:

High cholesterol \rightarrow increase risks of having a TIA.
lower cholesterol by making certain lifestyle changes, such as eating a healthy, balanced diet can avoid TIA..
Statins are used to lower the cholesterol level.
Statins help reduce the production of cholesterol in liver [5].
CAROTID ENDARTERECTOMY:

CAUSES:
- Atherosclerotic plaque
- Thrombus
- Excessive narrowing of large vessels
- Increased blood viscosity.
- Hypertension,
- Heart disease (especially atrial fibrillation),
- Migraine,
- Hypercholesterolemia, and
- Diabetes mellitus\(^6\).

INITIAL WORK-UP FOR SUSPECTED TIA:
The first step in evaluating a patient with symptoms of TIA is to confirm the diagnosis\(^7\).

\[\text{To Confirm TIA}\]
\[
\begin{align*}
\text{Acute TIAs (<24-48h)} & & \\
\text{Severe} & \rightarrow & \text{Evaluation} & \rightarrow & \text{Thrombolytic therapy} & \rightarrow & \text{Initiate Aspirin therapy with in 24-48h} & \left\{ \begin{array}{l}
\text{not confirmed} \\
\text{confirms}
\end{array} \right. \\
\text{Acute} & \rightarrow & \text{Outpatient evaluation} & \rightarrow & \text{Perform certain tests in 25 minutes} & \rightarrow & \text{Frequent vital signs, with attention to BP, heart rhythm, heart CT, ECG, medical and neurological examination, MRI, MRA, INR, measure PT, aPTT.} & \rightarrow & \text{Proper medication} & \rightarrow & \text{Treatment}
\end{align*}
\]

\(\text{Pt= prothrombin time, aPTT= activated partial thromboplastin time, INR= International Normalized Ratio, MRI= magnetic resonance imaging, MRA= magnetic Resonance angiography}\)
Typical Characteristics Of Ischemic Syndromes Involving The Anterior And Posterior Circulations

<table>
<thead>
<tr>
<th>ISCHEMIC SYNDROME:</th>
<th>SIGNS</th>
<th>SYMPTOMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCULATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anterior circulation</td>
<td>Visual-field cut</td>
<td>Inability to see well (i.e., difficulty reading or driving)</td>
</tr>
<tr>
<td></td>
<td>Language dysfunction (left hemisphere most often affected): aphasia</td>
<td>Difficulty finding or understanding words, inability to read, garbled or slurred speech</td>
</tr>
<tr>
<td></td>
<td>Motor dysfunction: contralateral face, arm, or leg weakness</td>
<td>Dropping objects; depending on severity, inability to lift or move a body part or objects</td>
</tr>
<tr>
<td></td>
<td>Sensory dysfunction: contralateral increased or decreased sensation to pain, heat, or cold</td>
<td>Tingling (paresthesias), numbness, or pain</td>
</tr>
<tr>
<td>Posterior circulation</td>
<td>Behavior dysfunction (right hemisphere): inattention to surrounding environment, particularly to one side; if severe, patient may deny deficits or even his or her own body parts</td>
<td>The patient usually reports no symptoms, but family members or others report that the patient has difficulty dressing, ignores half of food on a plate, or has poor attention to one side of the room or to someone speaking to the patient on one side versus the other (most often, the left side is ignored).</td>
</tr>
<tr>
<td></td>
<td>Nystagmus</td>
<td>Vertigo (spinning sensation)</td>
</tr>
<tr>
<td></td>
<td>Disconjugate gaze</td>
<td>If subtle, blurry or double vision</td>
</tr>
<tr>
<td></td>
<td>Bilateral signs</td>
<td>Abrupt weakness of both legs, falling</td>
</tr>
</tbody>
</table>

MISCELLANEOUS DRUGS:

COUMADIN:
(Warfarin sodium) is used to treat blood clots and to lower the chance of blood clots forming in your body. Blood clots can cause a stroke, heart attack, or other serious conditions if they form in the legs or lungs. Statins are used to lower LDL cholesterol. Statins can help lower the risk of heart attack, stroke, and death in people who are at high risk of a heart attack or stroke. Statins and statin combinations can:
- Decrease the level of heart attack.\(^9\)
- Decrease in stroke level.
- Reduce LDL by 18%-55%.
- Increase HDL by 5% to 15%.
- Reduce triglycerides by 7% to 30%.\(^11\)

STATINS:

RISK FACTORS:\(^12\):

<table>
<thead>
<tr>
<th>RISK FACTORS FOR TIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Hypercholesterolaemia</td>
</tr>
<tr>
<td>High dietary risk score</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>Psychological stress</td>
</tr>
</tbody>
</table>
RISK OF STROKE
More than 20% of strokes are preceded by a TIA. Reliable estimations of this risk are necessary for educating the population and planning effective service provision and appropriate follow-up by specialist services. The early risk of stroke after TIA varies widely between 3% and 11% at seven days; a significant difference, with the lowest risk being when emergency treatment has been given by specialized stroke services. [13]

DIAGNOSTIC TESTS
Brain Imaging:
(CT) Computed tomographic scanning of the head without contrast medium should be performed to identify sub-arachnoid hemorrhage, intracranial hemorrhage, or subdural hematoma. In hemorrhage, anticoagulants worsen the central nervous system bleeding should be avoided. Patient with hypertension-mediated intracranial hematoma, and further testing may be required if the patient is found to have subarachnoid hemorrhage (e.g., cerebral angiography to rule out aneurysm).
It can identify conditions that mimic TIA, including tumors and other masses, as well as conditions that are associated with seizures or auras. A head CT scan can identify signs of early brain damage or evidence of old strokes. [14,15] Finally, CT scanning of the head with contrast medium should be performed in the febrile patient to rule out an infectious cause or in the patient with a suspected mass (e.g., metastatic carcinoma, abscess).

Electro physiologic Testing:
The patient with cardiac disease, echocardiography should be performed EPT [15,16]. Atrial fibrillation and left ventricular hypertrophy are important risk factors for stroke. In patients with untreated atrial fibrillation, echocardiography may identify a thromboembolic source or left ventricular systolic dysfunction, both of which are common predictors of ischemic stroke. [17]

FOLLOW-UP EVALUATION
LIPID PROFILE:
Treatment with statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) reduces the risk of stroke by about 30 percent in patients with CHD. [20,21] Therefore, a fasting lipid profile reflective of the patient's normal eating habits should be obtained, and statin therapy should be initiated if indicated.

HYPERCOAGULABLE STATES:
Patients with stroke, migraine, spontaneous abortion, pulmonary emboli, or deep venous thrombosis, should be evaluated for hypercoagulable states. Initial tests include ESR, antinuclear antibody test, rapid plasma reagent test, and antiphospholipid antibody tests. Referral to a hematologist or neurologist can ensure cost-effective evaluation of the multiple coagulation-factor abnormalities and conditions that can cause embolic stroke.

TESTING FOR ARTERIAL PATENCY AND BLOOD FLOW
Carotid duplex ultra sonography should be performed in a reliable laboratory, preferably one with validation against the results of
cerebral angiography. Alternatively, cerebral and cervical vessels can be evaluated by magnetic resonance angiography (MRA) with contrast medium or by CT angiography. If the work-up demonstrates carotid or other large-vessel atherosclerotic disease in the patient with TIA and unrecognized CHD, coronary artery testing is recommended.\[22\]

MRI: (Magnetic Resonance Imaging)
Advantages of MRI of the brain over CT scanning of the head include:
- Better imaging of tissues (i.e., greater sensitivity for early edema),
- Superior imaging within the posterior fossa (including the brainstem and cerebellum),
- Additional planes of imaging (sagittal, coronal, and oblique),
- No exposure to radiation.

When cerebro vascular malformation, aneurysm, cerebral venous thrombosis, or arteritis is suspected, MRI or MRA is preferred. Diffusion-weighted imaging detects cellular edema as early as 10 to 15 minutes after symptom onset. However, this technique is not yet widely available.

MRA: (Magnetic Resonance Angiography)
Current MRA techniques use intravenously administered contrast medium (gadolinium) to visualize the vessels. MRA with the administration of contrast medium also is effective in identifying vertebra basilar stenosis,\[23\] Depending on the MRA acquisition technique, the percentage of intracranial vessel stenosis can be overestimated\[24\]. Therefore, if accuracy is therapeutically important, cerebral angiography is necessary.

When near occlusion of the carotid artery cannot be distinguished from complete occlusion on MRA or carotid Doppler ultrasound studies, cerebral angiography should be considered. Surgery generally cannot be performed on completely occluded vessels.

Patients with carotid artery dissection can present with acute or subacute unilateral neck, head, or jaw pain. These symptoms may be associated with visual or language deficits, or with sensory motor deficits, particularly in the opposite arm. More typically, patients with carotid artery dissection present with only some of these features, such as temporal headache with lateral neck pain and, possibly, transient visual obscuration (amaurosis fugax) because of thromboemboli in the ophthalmic artery. Both carotid and vertebral artery dissections have been described after trauma, If the MRI or MRA study is inconclusive, cerebral angiography should be used to rule out arterial dissection or better define the percentage of vessel narrowing.

CT Angiography:
CT angiography also is becoming a useful imaging modality for identifying carotid or vertebral artery dissection. Conventional CT scanning in combination with CT angiography currently is being evaluated as an addition to the diagnostic imaging tools for use in patients with TIA or stroke. This combination can provide useful information about vascular anatomy and the extent and location of infarction. It may allow rapid evaluation of patients with TIA or stroke in hospitals or institutions that do not have MRI capability.

Cerebral Angiography:
It is the gold standard technique for complete evaluation of intracranial and extra cranial vessels. With cerebral angiography, both arterial and venous phases of cerebral blood flow can be visualized (dynamic study). However, cerebral angiography is an invasive technique that can result in neurologic complications (total incidence rate: 1.3 to 4.6 percent),\[25,26\] including major stroke or death in 0.1 to 1.3 percent of patients, depending on the study.\[27,28\]
Relative indications for cerebral angiography include suspected carotid dissection unconfirmed on a noninvasive neuroimaging study, subarachnoid hemorrhage (to identify bleeding source), intracerebral hemorrhage in the absence of hypertension, and vasculitis. If one of these conditions is suspected, referral to a neurologist can be helpful in obtaining and interpreting the angiogram.

CONCLUSION

“Transcienic ischemic attack” as it is mentioned as a temporary blockage of blood supply to the brain. It can cause the severe chronic effects to the brain when untreated. Named as “mini-stroke”. The medications used in this review are helpful for the treatment of the temporary blood disorder. According to the high blood pressure and cholesterol levels the chances in increase of TIA are in higher states. The review included a theoretical literature on the medication of the TIA. Conformation can be done by performing the specified diagnostic tests followed by disease profile.

REFERENCES

4. nhs.uk/Conditions/Transient-ischaemic-attack/Pages/Treatment.aspx
7. NINA J. SOLENSKI, M.D., University of Virginia Health Sciences Center, Charlottesville, Virginia Am Fam Physician. 2004, Apr 1; 69 (7):1665-1674.
9. 2013 Bristol-Myers Squibb Company, All Rights Reserved
14. Albers GW, Hart RG, Lutsep HL, Newell DW, Sacco RL. AHA scientific statement. Supplement to the