

Review Article

A Review: Analytical Methods for Determination of Cilnidipine in Biological Fluid and Pharmaceutical Dosage Forms

Farhana V. Buchiya*1, Vineet Jain2, Hasumati Raj1

¹Department of Quality assurance,

²Department of Pharmacognosy,

Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat, India

*buchiyafarhana22@gmail.com

ABSTRACT

Cilnidipine is act as a dual blocker by blocking L- type of calcium channel present in vascular smooth muscles and N- type of calcium channel present in sympathetic nerve terminal that supply blood vessels. Cilnidipine used in treatment of mostly in hypertension and various cardiovascular diseases except in Angina. Cilnidipine used alone or in combination. This review covers most recent analytical methods such as various spectroscopic methods, chromatographic methods and other methods for determination of cilnidipine in various pharmaceutical dosage forms and biological matrix were reported.

Keywords: Cilnidipine, L/N type calcium channel blocker, Anti- hypertensive drug, analytical method

INTRODUCTION

Cilnidipine (CIL) 1,4- Dihydro- 2,6- dimethyl- 4-(3-nitrophenyl)-3,5-pyridinecarboxylic acid 2-methoxyethyl(2E)-3-phenyl-propenyl ester is a novel and unique dihydropyridine calcium channel blocker that possesses a slow-onset, long-lasting vasodilating effect.^[1]

Chemical Structure of Cilnidipine

Table No: 1 Drug Profile [2-5]

PARAMETERS	DESCRIPTION
Category	Calcium channel antagonist
Molecular Formula	C ₂₇ H ₂₈ N ₂ O ₇
Molecular Weight	492.52 gm/mol
Characteristics	Yellow crystalline solid
Solubility	Soluble in DMSO (> 25 mg/ml), ethanol (20
	mg/ml), water (≤ 2 mg/ml), and methanol.

How to cite this article: FV Buchiya, V Jain, R Hasumati; A Review: Analytical Methods for Determination of Cilnidipine in Biological Fluid and Pharmaceutical Dosage Forms; PharmaTutor; 2014; 2(11); 22-29

Dose		Adult: 5-10 mg once daily, increase to 20 mg
		once daily if necessary.

MECHANISM OF ACTION: [6-7]

Cilnidipine is a dual blocker of L-type voltage-gated Ca²⁺ channels in vascular smooth muscle and N-type Ca2+ channels in sympathetic nerve terminals that supply blood vessels. The inhibition of N-type Ca²⁺ channels may provide a new strategy for the treatment of cardiovascular diseases. L-type calcium channels are the main targets of the CCB. N-type calcium is distributed along the nerve and in the brain, cilnidipine is anticipated to exert specific action on nerve activity, such as inhibition of the sympathetic nervous system. It inhibits the Ca²⁺ influx in both in vessel & in the nerve. So causes the Vasodilation & inhibits the release of nor epinephrine, which causes the Vasodilation and decreases the heart rate & also decreases cardiac contraction in heart. So, used in treatment of hypertension

Cilnidipine – net benefits

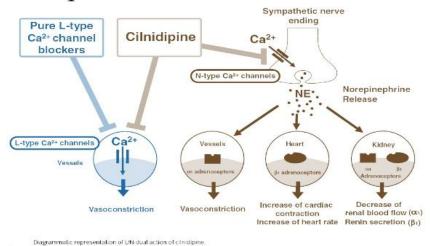


Fig 1: Diagrammatic representations of Dual Action of Cilnidipine [7]

PHARMACOKINETIC PARAMETERS:

Table No: 2 Pharmacokinetic Parameters of Cilnidipine

PARAMETERS	DESCRIPTION
Absorption	Orally absorbed
Metabolism	Hepatic. Metabolised extensively (90%) to
	inactive metabolites via the cytrochrome P ₄₅₀ 3a4
	iso enzyme.
Excretion	Urine
Peak Plasma Concentration	6-12 hour following oral administration.
	Bioavailability is 64-90%.

SIDE EFFECTS^[8]

Dizziness; flushing; headache; hypotension; peripheral oedema; tachycardia; palpitations; GI disturbances; increased micturition frequency; lethargy; eye pain; depression; ischaemic chest pain; cerebral or myocardial ischaemia; transient blindness; rashes; fever; abnormal

liver function; gingival hyperplasia; myalgia; tremor; impotence.

COMBINATION OF CILNIDIPINE:

Cilnidipine + Telmisartan

Cilnidipine + Olmesartan medoxomil Cilnidipine + Metoprolol Succinate

MARKETED FORMULATION OF CILNIDIPINE:

Table No: 3 Marketed Formulation of Cilnidipine^[9]

Sr. No.	Brand Name	Company Name	Formulation	Dose (mg)
1	Cilcar	United pharmacies	Tablet	5,10
2	Cilnidipine tablet	Actza pharmaceutical	Tablet	250
3	Cilcar	J.B. Chemicals &	Tablet	5,10,20
		Pharmaceuticals Ltd.		

ANALYTICAL METHOD

This all are the methods which are used for the determination of Cilnidipine in marketed formulation and in biological fluids. This all analytical methods are reported which are seen during the literature survey. This article describes the review on the all reported analytical methods with specific conditions.

A. COMPENDIALMETHOD:

Cilnidipine is not official in any pharmacopeia.

B. REPORTED METHOD:

1. CHROMATOGRAPHIC METHODS:

Various chromatographic methods are used for the determination of the Cilnidipine alone or combination with other drugs in various marketed formulation and in biological fluids like human plasma. Chromatographic methods like Reverse phase High performance liquid chromatography (RP-HPLC) & High performance thin layer chromatography (HPTLC) are used for determination of Cilnidipine. Below in table describes the summary of the various chromatographic methods are used with the method description.

Table No.4: Summary of Chromatographic Methods of Cilnidipine

Title	Method	Mobile Phase	Stationary Phase	Wavelength (nm)	Ref.
Simultaneous estimation	RP-HPLC	Buffer: methanol:	INERTSIL ODS C18	232	10
of telmisartan and		Acetonitrile	(250 x 4.6 mm, 5		
cilnidipine in bulk and in		(30:40:30 v/v/v)	μ, Make: GL		
tablet formulation using			Sciences) pre		
RP-HPLC			packed column.		
Simultaneous RP-HPLC	RP-HPLC	Methanol: 40 mM	HiQ sil C18 HS	245	11
estimation of cilnidipine		Potassium	column (250 × 4.6		
and telmisartan in		dihydrogen ortho	mm i.d.)		
combined tablet dosage		phosphate buffer	and PDA detector		
form		(pH 3) (90:10 v/v))			
Development and	RP-HPLC	Methanol: 40 mM	HiQ sil C18	252	12
validation of analytical		Potassium	column (250 × 4.6		

method for simultaneous		dihydrogen ortho	mm i.d.) and PDA		
estimation of Cilnidipine		phosphate buffer	detector		
and Olmesartan		(90:10 v/v)			
Medoxomil in bulk and					
tablet dosage form by					
RP-HPLC					
	RP-HPLC	Acetonitrile: Water	Shimandzu	231	13
		(90:10 v/v)	Phenomenex-luna		
			C18 (250 x		
			4.6mm, 5 μ)		
Development and	HPTLC	Chloroform: Ethyl	Silica gel F254 TLC	280	14
validation of high		acetate: Methanol:	plates	-	
performance thin layer		Triethylamine			
chromatographic		9:2:0.5:0.5 v/v/v/v.			
Method for Cilnidipine					
and Metoprolol S					
Succinate in their					
combined					
Pharmaceutical dosage					
form					

2. UV SPECTROSCOPIC METHOD

Spectrophotometric method is versatile and economical particularly for developing countries. Spectrophotometric method has several advantages such as being easy, less expensive and less time consuming compared with most of the other methods. A simple, precise and economical Spectrophotometric method for the estimation of Cilnidipine in pharmaceutical bulk and tablet dosage form was developed and validated. Various methods like Q-absorption ratio, Simultaneous equation, dual wavelength & derivative methods are used for determination of Cilnidipine alone or in combination with other drugs in marketed formulation. Below in table describes the various Spectroscopic methods with the method description and condition which are reported on review literature.

Table No.5: Summary of UV spectroscopic methods of Cilnidipine

Title	Method	Wavelength for Cilnidipine	Wavelength for other drug	Solvent	REF.
Spectrophotometric	simple and sensitive	240nm		Ethanol	
Method for the Estimation	Spectrophotometric		-		15
of Cilnidipine in Bulk and	Method				
Pharmaceutical Dosage					
forms					
Method validation	Spectrophotometric	240nm		Methanol	
Spectrophotometric	Method		-		16
estimation of cilnidipine					

	133N, 234		•	,	
Development and	Simultaneous	240nm	297nm	Methanol	
validation of UV	equation method				17
Spectrophotometric					
method for the					
simultaneous estimation of					
cilnidipine and telmisartan	Q- absorption ratio	Iso- Absorptive	point-270nm		
in tablet dosage form	method				
utilising simultaneous					
equation and absorbance					
ratio method					
Dual Wavelength	Dual Wavelength			Methanol	18
Spectrophotometric	Spectrophotometric	264 nm and	229 nm and		
Method for Estimation of	Method	297.4 nm	246.8 nm		
Cilnidipine and Telmisartan					
in Their Combined Dosage					
Form.					
Development and	Dual Wavelength	352.92nm	282.99nm	Methanol	19
Validation of Dual	Spectrophotometric				
Wavelength UV	Method				
Spectrophotometric					
Method for simultaneous					
estimation of Cilnidipine					
and Olmesartan					
Medoxomil in Tablet					
dosage form					
Development and	Q- absorbance ratio	240nm	224nm	Methanol	20
validation of Q-absorbance	Spectrophotometric				
ratio Spectrophotometric	method				
method for simultaneous					
estimation of Cilnidipine					
and Metoprolol succinate					
in bulk and combined		Iso- absorptive point-231nm			
dosage form					

3. STABILITY INDICATING METHOD

Stability indicating method is used to check out the stability of drug in various conditions like in acidic, basic, oxidative, photolytic & thermal Degradation. Below in table describes the various Stability indicating methods with the method description and condition which are reported on review literature.

Table No: 6 Summary of Stability Indicating methods of Cilnidipine

Title	Method	Mobile phase	Stationary	Wave	Ref.
			phase	length	

Development and	Stability	Methanol and 0.05 M	C18 column	254nm	21
validation of a Rapid	indicating				
Stability Indicating	RP HPLC	Phosphate Buffer			
chromatographic		at pH 3.0 (80:20			
determination of		v/v)			
Cilnidipine in Bulk and					
Dosage form.					
Stability Indicating	Force	Acetonitrile	Waters C18	245nm	22
Simultaneous Validation	degradation	(ACN): buffer pH	250 × 4.6 mm,		
of Telmisartan and	study by RP-	3.0 with	5 μm		
Cilnidipine with Forced	HPLC	orthophosphoric			
Degradation Behaviour		acid (68 : 32v/v)			
Study by RP-HPLC in					
Tablet Dosage Form					

4. OTHER ANALYTICAL METHOD FOR CILNIDIPINE

Table No. 7: other method for determination of Cilnidipine

TITLE	Method	Internal	Mobile Phase	REFERENCE
		Standard		
Quantification of Cilnidipine	LC-MS		0.1M Ammonium	
In Human Plasma By Liquid	Method(ESI	Nimodipine	acetate (pH 7.0):	23
Chromatography-Mass Spectrometry	positive ion		Acetonitrile	
	mode)		(80:20, v/v)	
Development of a liquid	LC-MS		10 mM	
chromatography/negative-ion	Method(ESI	Benidipine	Ammonium	
electro spray tandem mass	negative		acetate buffer:	24
spectrometry assay for the	ion mode)		Methanol (30:70,	
determination of cilnidipine in			v/v; adjusted	
human plasma and its application to			with acetic acid	
a bioequivalence study			to pH 5.0).	

DISCUSSION

The presented review highlights on various analytical methods reported for estimation of Cilnidipine in alone or in combination with other drugs in marketed formulation and biological matrix like human plasma. RP-HPLC & UV methods were found to be most widely used methods. Various chromatographic & Spectroscopic conditions are presented in under Table. These methods are found to be rapid, accurate, sensitive, economical and reproducible for determination of Cilnidipine in

various marketed formulations & biological matrix.

CONCLUSION

So, from all above information it should be concluded that various spectroscopic methods, chromatographic methods & other methods were used for determination of Cilnidipine alone or in combination which has been successfully used on a routine basis and allows the quantification of the drug in various pharmaceutical dosage form & in biological

matrix in short analytical time. These all methods are sensitive, simple, fast, accurate, reproducible & posses excellent linearity &

precision characteristic. These observations make it possible to anticipate the use of these methods as an official procedure.

↓ REFERENCES

- 1. Kokilambigai KS and Lakshmi KS, "Analytical Methodologies for Determination of Cilnidipine: An Overview". International Journal of Pharmacy and Pharmaceutical Science. 2014; 6.
- 2. Drug Profile Available from: Abchem biomedicals Cilnidipine ab141038, product datasheet
- 3. Drug Profile Available from: drugs.com/
- 4. Drug Profile Available from: productblock/Cilnidipine(CAS132203-704)/
- 5. Drug Profile Available from: mims.com/
- 6. Mechanism of action available from: faculty.ksu.edu.sa/.../calcium channel blockers reserch.do./
- 7. Sarat K and Ramesh G. "The fourth-generation Calcium channel blocker Cilnidipine". Indian Heart Journal. Dec 2013; 65: 691–695.
- 8. medicineindia.org/pharmacology-for-generic/2958/cilnidipine
- 9. medguideindia.com/
- 10. Mohd IS and Medidi S, "Simultaneous estimation of Telmisartan and Cilnidipine in bulk and in tablet formulation using RP-HPLC". An International Journal of Advances in Pharmaceutical Sciences. May-June 2014; 5: 2142-2148.
- 11. Prajakta P and Santosh VG, "Simultaneous RP-HPLC estimation of Cilnidipine and telmisartan in combined tablet dosage form". Pelagia Research Library Der Chemica Sinica. 2013; 4: 6-10.
- 12. Amit SM, Manjusha ND and Sanjay DS, "Developement and validation of analytical method for simultaneous estimation of Cilnidipine and olmesartan medoxomil in bulk and tablet dosage form by RP-HPLC". International Journal of Pharmacy and Pharmaceutical Science. 2014; 6.
- 13. Tushar KK, Darshil BS and Dr. Dilip GM, "Development and validation of q-absorbance ratio Spectrophotometric method for simultaneous estimation of Cilnidipine and metoprolol succinate in bulk and combined dosage form". International Journal of Pharmacy and Pharmaceutical Sciences. 2014; 6.
- 14. Vaghela S, Jagdish K, Pinak P and Nehal S, "Devlopment and validation of high performance thin layer chromatographic Method for Cilnidipine and metoprolol succinate in their combined Pharmaceutical dosage form". International Journal of Research in Pharmaceutical and Nano Sciences. 2014; 3:61 72.
- 15. Mohammed MS, "Spectrophotometric Method for the Estimation of Cilnidipine in Bulk and Pharmaceutical Dosage forms." Oriental journal of chemistry. 2013; 29:131-134.
- 16. Pankaj PC and Bhalerao V, "Method validation for spectrophotometric estimation of Cilnidipin". International Journal of Pharmacy and Pharmaceutical Sciences. 2012, 4.
- 17. Haripriya M and Neethu A, "Development and validation of UV spectrophotometric method for the simultaneous estimation of Cilnidipine and telmisartan in tablet dosage form utilising simultaneous equation and absorbance ratio method". Research article pharmaceutical sciences. Jan-Mar 2013;3:343-348
- 18. Shahin V and Falgun M, "Dual Wavelength Spectrophotometric Method for Estimation of Cilnidipine and Telmisartan in Their Combined Dosage Form". Research and Reviews: Journal of Pharmaceutical Analysis. April June 2014; 3.
- 19. Isha JS and Hiral JP, "Development and Validation of Dual Wavelength UV Spectrophotometric Method for simultaneous estimation of Cilnidipine and Olmesartan Medoxomil in Tablet dosage form". Indian Journal of Pharmaceutical and Biological Research. 2014; 2:76-81.

- 20. Tushar KK, Darshil BS and Dr. Dilip GM, "Development and validation of q-absorbance ratio Spectrophotometric method for simultaneous estimation of Cilnidipine and metoprolol succinate in bulk and combined dosage form". International Journal of Pharmacy and Pharmaceutical Sciences. 2014; 6.
- 21. Mohammed SM and Nagaraj MY," Development and validation of a Rapid Stability Indicating chromatographic determination of Cilnidipine in Bulk and Dosage form". Research Journal of Pharmacy and Technology. 2013; 6: 296-299.
- 22. Reema HR and Hitendra SJ, "Stability Indicating Simultaneous Validation of Telmisartan and Cilnidipine with Forced Degradation Behaviour Study by RP-HPLC in Tablet Dosage Form". Research Article. 2013: 6.
- 23. Kyeong R and Yoon JC, "Quantification of Cilnidipine human plasma by liquid chromatography- mass spectrometry". Journal of liquid chromatography & related technologies.35: 308-320.
- 24. Heon WF and Ji Hyung S, "Development of a liquid chromatography/negative-ion electroscopy tandem mass spectrometry assay for the determination of Cilnidipine in human plasma and its application to a bioequivalence study". Journal of Chromatography B. February 2008; 862: 246–251.