Biotechnology Articles

EMERGENCE OF NOVEL PEPTIDE MOLECULAR CLASS AS ANTIBIOTICS

{ DOWNLOAD AS PDF }

ABOUT AUTHORS
Akansha Bhandari1, Nitisha Bhandari2*
1
Department of Lifesciences,
Shri Guru Ram Rai Institute of Technology and Science, Patel Nagar, Dehradun, India
2 Department of Biotechnology, Graphic Era University, Dehradun, India
*nitishabhandari89@gmail.com

ABSTRACT
Modern era diseases bring more challenges and hurdles to the rational drug targeting. However chemotherapy is the most affected area as most reports are related to antibiotics resistance. Although some successes are accounted as new molecules and new structures are keep on synthesizing or either isolated. One such example is Teixobactin which is isolated for Eleftheria terrae, which was found to be active against Staphylococcus and Mycobacterium bacteria. The story of Teixobactin isolation could open new horizon and opportunistic ways for future designing of useful drugs against these resistance bacteria. In the similar context we tried to compile the relevant paper that was published in nature in 2015 into a commentary based critical review.


EXTRACTION AND PURIFICATION OF NUCLEIC ACID USING CBNP & PCIA TECHNIQUE

{ DOWNLOAD AS PDF }

About Author
Nirav Soni
Department of Quality Assurance,
A-One Pharmacy College,
Anasan, Ahmedabad, Gujarat, India
nirav_sonic@yahoo.com

ABSTRACT
Isolation of Nucleic acid easily by Solid Phase Extraction (SPE) and this approach, using commercially available Extraction of nucleic acid column-based kits, requires no toxic chemicals and is a rapid and consistent method for concomitant protein extraction. It is a modern technique useful for separation of Nucleic acid which is  most reliable, less time consuming and separation of  impurities and continuity of reactive products using listed techniques like column-based nucleic acid purification, Nucleic acid methods& ethanol precipitation, DNA separation by silica adsorption. Buffer choice is significant to completely solubilized all proteins in the sample. This technique provides a simple and effective way to analyze protein and nucleic acids simultaneously from the same sample not affecting yield and quality.


BIOTECHNOLOGICAL/BIOLOGICAL PRODUCTS: ABOUT ITS STABILITY TESTING

{ DOWNLOAD AS PDF }

ABOUT AUTHORS
Vivek P. Chavda1*, Dharmesh Shaliya2, Bhargav Patel3, Ashish Gabani4
1Department of Pharmaceutics, B.K. Mody Government Pharmacy College, Rajkot, Gujarat, India
2Quality Assurance, Intas Pharmaceuticals Ltd., Ahmedabad, Gujarat, India
3Quality Assurance, Zydus cadila pharmaceuticals Ltd., Ahmedabad, Gujarat, India
4 Intas Biopharmaceuticals Ltd., Ahmedabad, Gujarat, India

* vivek7chavda@gmail.com

ABSTRACT
The drug delivery systems have made some of the technological advances especially in the case of biopharmaceuticals. When one talks about biotechnological product stability of drug product becomes main culprit due to dynamic nature of drug molecule. This review is grafted using ICH and other regulatory guidelines to provide an overview to stability testing of such molecules.


RNA INTERFERENCE-WEAPON AGAINST CANCER

{ DOWNLOAD AS PDF }

ABOUT AUTHORS:
Shalja Verma, Anand Kumar Pandey*
Department of Biotechnology, Institute of Engineering & Technology,
Bundelkhand University, Jhansi, Uttar Pradesh, India
vnsanand_9@rediffmail.com

ABSTRACT
Cancer is the second principal death cause, in the recent scenario 1 out of every 4 people die out of cancer. Not more than 50% advanced cancer subjects live a year ahead. RNA interference (RNAi) a phenomenon which serves for shutting off the expression of a specific sequence has proved itself a finest weapon against cancer. This mechanism involves silencing of the expression of desired mRNA sequence by degrading it using a dsRNA (double stranded RNA) molecule having complementarity to the desired mRNA. However a major challenge in proficient implementation of this therapy against cancer is lack of efficient delivery methods for the dsRNA to the target tissue. Various delivery methods had already been developed for efficient and effective delivery of the dsRNA and many are under trial. This review is going to present the great efficacy of RNAi against cancer and the various delivery methods performing capable work in accurate application of this therapy.


BIONANOPARTICLES: A GREEN NANOCHEMICAL APPROACH

{ DOWNLOAD AS PDF }

ABOUT AUTHORS:
Rahul Kumar*, Ved Prakash Singh, Damini Maurya, Anand Kumar Pandey
Department of Biotechnology, Institute of Engineering and Technology
Bundelkhand University, Jhansi, Uttar Pradesh, India
vnsanand_9@rediffmail.com

ABSTRACT
Nanoparticle, a core of bio-nanoparticle, which is used for polymers including natural and synthetic polymer and form different types of, liposomal and polymer nanoparticle. The designing, synthesis and manipulation of structures which is smaller than 100 nm, is termed as Nanotechnology. Nanoparticles are developed as a colloidal structure, synthesized by semi-synthetic and synthetic polymers. The emerging area of nanotechnology and Nano-sciencesare the application of nanoparticles, ranges in 1 to 100 nanometre (nm). The synthesis of silver nanoparticles for their potential application, it was originate to be eco-friendly and reliable, because of their exclusive properties. Mostly synthesis of AgNPs, by physical and chemical methods are too expensive, toxic, hazardous chemicals for various biological risks.The main objective of this study preferably lies thatgreen synthesis of AgNPs by several plants and its metabolites, extracts can be much safer to handle and easily available. The synthesis of AgNPs  are using several plants extract such as Oryza sativa, Zea mays, Basella alba, Helianthusannuls, Camellia sinensis ( green tea), Azadirachta indica (neem) ,Ssebania drummondii (leguminous shrub)sp. The AgNPs get attached in the cell wall of microorganism and can disturb the cellular respiration, permeability of the cell wall. Sometimes it can penetrate inside the cell wall which can interact protein, DNA, sulphur and phosphorus and causing cellular injury inside cell. It confers the antimicrobial activity. The AgNPs shows less antimicrobial activity against gram positive bacteria in comparison to gram negative bacteria because gram negative contain β-barrel proteins (i.e. Porins) and thinner peptidoglycan. The distinguishing property of silver nanoparticles it can be have higher surface area to volume ratio. When surface area increases the catalytic activity and surface energy of AgNPs corresponding to increase and biological effectiveness also increases. 

It identified that amalgamation of silver nanoparticle biochemical process is very fast process as compare to using microorganism (even several hours to few days). The NPs monodispersity, size are significant part in the valuation of NPs amalgamation. Therefore, operative regulator of monodispersity and NPs size are essentially examined. On numerous readings silver nanoparticle synthesis by microbes can be decompose later withassured dated of time. Thus the constancyof nanoparticle producebiological approachesmerits supplementary learning.


BREAKTHROUGHS IN EPIGENETICS

{ DOWNLOAD AS PDF }

ABOUT AUTHORS:
Shashi Shekhar Anand, Navgeet, Balraj Singh Gill*
Centre for Biosciences,
School of Basic and Applied Sciences,
Central University of Punjab, Bathinda, India
gillsinghbalraj@gmail.com

ABSTRACT
The word ‘epigenetic’ was first coined by Conrad Waddington in 1946. It deals with functionally relevant modifications to the genome that do not include a change in the nucleotide sequence. Till date observation has focused on the functions of genome sequences and how their regulation occurs. The emerging epigenetic changes and the interactions between cis-acting elements with protein factors  plays a central role in gene regulation as well as give insight to various diseases. To evaluate the crosstalk of DNA and protein by taking account of the whole genome, one new evolving technique which is called as ChIP-chip, works on the principle of combining chromatin immunoprecipitation with microarray. ChIP-chip has been recently used in basic biological studies and may be improved further and can be useful for other to aspects, like human diseases. Now a days large amount of discoveries by ChIP-chip and other high-throughput techniques like this   may be connected with evolving bioinformatics to add to our knowledge of life and diseases.


A REVIEW ON SINGLE USE DISPOSABLE TECHNOLOGY FOR RECOMBINANT PROTEIN MANUFACTURING

ABOUT AUTHOR
Madhusudan P Dabhole
Group Manager – BioProcess,
Richcore Life Sciences Ltd, Bangalore, Karnataka, India
madhav888@rediffmail.com

ABSTRACT
The manufacturing of recombinant products by fermentation and purification in stainless steel vessels has seen the transition from small scale to large scale and further to single use disposable technology. The requirement to develop and modulate the process has arisen from the cost and manufacturers need to move the facility on mobile platforms. The review describes the strategies and considerations for Single Use Disposable Technology. Recombinant proteins are widely used for treatment of various diseases and disorders. Single Use Disposable Technology makes it promising to produce and formulate these proteins from bench scale to commercial level in a shorter span of time so that it can reach the physician and patients.


COMPARATIVE EVALUATION OF PURIFICATION METHODS FOR PRODUCTION OF POLYPEPTIDE ANTIBIOTICS – “POLYMYXIN B” AND “CEREXIN A” FROM BACILLUS SPECIES

{ DOWNLOAD AS PDF }

ABOUT AUTHORS:
Pratyush Kumar Das1, Shilpa Das1, Debasish Sahoo2, Jikasmita Dalei2, V.Madhav Rao2, Sunakar Nayak2, Swadhin Palo3
1Centre of Biotechnology, Siksha O Anusandhan University, Bhubaneswar, Odisha, India.
2Nitza Biologicals (P.) Ltd.Chandra Towers, Near Fortune Honda Showroom, Neredmet 'X' Road, Secundrabad, Andhra Pradesh, India.
3Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, India.
onlypratyush11@gmail.com

ABSTRACT:
Polymyxin B and Cerexin A are two polypeptide antibiotics, the first one discovered and incorporated quite earlier and the later one has still not been used in clinical trials for its high cytotoxic nature. Although Polymyxin was discovered very earlier but in the mid-way for some time it had lost its importance and was not used frequently due to its narrow spectra of action that only acts on gram negative microbes and because of its toxicity level. But with several new resistant gram negative microbes coming into the limelight responsible for causing many infections, Polymyxin B (the least toxic of all Polymyxins) has again been started to be used in pharmaceutical formulations and drugs. In this project, both Bacillus polymyxa and Bacillus cereus responsible for production of Polymyxin B and Cerexin A respectively were isolated from the rhizosphere of grass and cultured in the lab. They were confirmed by biochemical tests and then used to produce the corresponding antibiotics by submerged fermentation. The crude antibiotic thus obtained were purified by various methods like adsorption through activated charcoal, acetone precipitation, dialysis, Ion Exchange and Sephadex column chromatography and the results were compared to find the best possible way to purify the antibiotics keeping in mind that they show the maximum activity as possible on a lab scale. Further work on Cerexin A was not possible due to the unavailability of its standard solution. Work was carried out for quantitative estimation of purified and crude Polymyxin B by performing spectrophotometric assay against standard polymyxin.


DNA MICROSATELLITES: A REVIEW

{ DOWNLOAD AS PDF }

About Authors:
Shikha Jain*, Ranjana Joshi, Kirti Jatwa, Avnish Sharma, S.C. Mahajan
Department of Pharmaceutics,
Mahakal Institite of Pharmaceutical Studies,
Behind Air strip, Datana, Dewas Road, Ujjain, M.P.
jain.shikhapharma@gmail.com

Abstract
Microsatellites consist of tandemly repeated sequence, no more than 6 bases long. They are scattered throughout most eukaryotic genomes. The major characteristic that makes microsatellites as useful and powerful genetic tool is the extensive length polymorphism that first of all reflects allelic variation in the number of the tandemly arranged perfect repeats. Microsatellite are generally considered as the most powerful genetic marker.
A genetic marker is a gene or DNA sequence with a known location on a chromosome that can be used to identify individuals or species. Genetic marker that reveal polymorphisms at the DNA level are called molecular marker.
Molecular markers are called as DNA markers, which should be thought of as signs along the DNA trail that pinpoint the location of desirable genetic traits or indicate specific genetic differences.They are responsible for various neurological diseases and hence the same cause can now be utilized for the early detection of various diseases, such as, Schizophrenia, Bipolar Disorder and Congenital generalized Hypertrichosis . These agents are widely used for forensic identification and relatedness testing, and are predominant genetic markers in this area of application.


AMPHIPHILIC JANUS LIKE PARTICLES FOR BIOMEDICAL APPLICATION

{ DOWNLOAD AS PDF }

ABOUT AUTHOR:
*1Patitapabana Parida, 1Bibhukalyan P Nayak, 2Subash Chandra Mishra
1Department of Biotechnology and Medical Engineering,
2Department of Metallurgy & Materials Engineering
National Institute of Technology Rourkela, Odisha, India
*paridap@nitrkl.ac.in

ABSTRACT
Nano structure possesses high surface area that the functional groups can be able to expose their reactive capacity due to high surface energy. So as to consider their size of the amphiphilic nanoparticle dual-surface structure containing body called as janus particle introduced since about twenty years in industry with purpose of drug delivery and diagnostic purpose in the field of paramedical areas. Janus bodies can carry both lipophilic and hydrophilic groups on its surface. Nano-sized morphology could play multiple roles in cancer treatment including diagnosis, biomedical imaging, tissue engineering and drug delivery.


Pages