You are hereNovel approach of Buccal Drug Delivery System: An Overview

Novel approach of Buccal Drug Delivery System: An Overview

11. Different Types of Buccal Dosage Form

11.1. Buccal tablets
Tablets have been the most commonly investigated dosage form for buccal drug delivery to date. Buccal tablets are small, flat, and oval, with a diameter of approximately 5–8 mm. Unlike conventional tablets, buccal mucoadhesive tablets allow for drinking and speaking without major discomfort. They soften, adhere to the mucosa, and are retained in position until dissolution and/or release is complete. These tablets can be applied to different sites in the oral cavity, including the palate, the mucosa lining the cheek, as well as between the lip and the gum. Successive tablets can be applied to alternate sides of the mouth. The major drawback of buccal bioadhesive tablets is their lack of physical flexibility, leading to poor patient compliance for long-term and repeated use [24].

11.2. Buccal patches
Patches are laminates consisting of an impermeable backing layer, a drug-containing reservoir layer from which the drug is released in a controlled manner, and a bioadhesive surface for mucosal attachment. Buccal patch systems are similar to those used in transdermal drug delivery. Two methods used to prepare adhesive patches include solvent casting and direct milling. In the solvent casting method, the intermediate sheet from which patches are punched is prepared by casting the solution of the drug and polymer(s) onto a backing layer sheet, and subsequently allowing the solvent(s) to evaporate. In the direct milling method, formulation constituents are homogeneously mixed and compressed to the desired thickness, and patches of predetermined size and shape are then cut or punched out. An impermeable backing layer may also be applied to control the direction of drug release, prevent drug loss, and minimize deformation and disintegration of the device during the application period.

11.3 Buccal films
Films are the most recently developed dosage form for buccal administration .Buccal films may be preferred over adhesive tablets in terms of flexibility and comfort. In addition, they can circumvent the relatively short residence time of oral gels on the mucosa, which are easily washed away and removed by saliva. Moreover, in the case of local delivery for oral diseases, the films also help protect the wound surface, thus helping to reduce pain and treat the disease more effectively. An ideal film should be flexible, elastic, and soft, yet adequately strong to withstand breakage due to stress from mouth movements. It must also possess good bioadhesive strength in order to be retained in the mouth for the desired duration of action. Swelling of film, if it occurs, should not be too extensive in order to prevent discomfort.

11.4. Buccal gels and ointments
Semisolid dosage forms, such as gels and ointments, have the advantage of easy dispersion throughout the oral mucosa. However, drug dosing from semisolid dosage forms may not be as accurate as from tablets, patches, or films. Poor retention of the gels at the site of application has been overcome by using bioadhesive formulations .Certain bioadhesive polymers, e.g. poloxamer 407, sodium carboxy methylcellulose, carbopol, hyaluronic acid, and xanthan gum, undergo a phase change from a liquid to a semisolid. This change enhances the viscosity, which results in sustained and controlled release of drugs. However, these polymers have been investigated for this purpose primarily in ocular drug delivery [118,119].

The buccal mucosa offers several advantages. Drugs which have low oral bioavailability due to first pass hepatic metabolism or degradation in the acidic environment of the stomach can be efficiently administered through the buccal mucoadhesive films which deliver the drugs directly into the systemic circulation. Buccal drug delivery system can also sustain the drug release and hence the drug action, so they can be used as an alternative to sustained release tablets. The additional advantage in case of buccal dosage form is that the drug source can be withdrawn at any time if required, but in case of ordinary oral dosage form, this is not possible. Buccal drug delivery is a promising area for continued research with the aim of systemic delivery of orally inefficient drugs as well as a feasible and attractive alternative for non-invasive delivery of potent peptide and protein drug molecules. However, the need for safe and effective buccal permeation/absorption enhancers is a crucial component for a prospective future in the area of buccal drug delivery.

1.    Chein  YW. Novel Drug Delivery Systems. Marcel Dekker USA, Inc. New York , 1992: 195 – 224.
2.    Chickering DE, Mathiowitz E. Mathiowitz E. Definitions mechanisms and theories of bioadhesion. In: Mathiowitz E, Chickering DE, Lehr CM. eds. Bioadhesive drug delivery systems: Fundamentals, novel approaches, and developments. Marcel Dekker USA,  Inc. New York, 1999: 1–10.
3.    Ahuja A, Khar RK, Ali J. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 1997, 23: 489–515.
4.    Park K, Robinson JR. Bioadhesive polymers as platforms for oral controlled drug delivery: method to study bioadhesion. Int J Pharm. 1984, 19: 107–127.
5.    Smart JD, Kellaway IW, Worthington HEC. An in vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J Pharm Pharmacol. 1984, 36: 295–299.
6.    Peppas NA, Buri P. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985, 2: 257–275.
7.    Nagai T, Nishimoto Y, Suzuki Y, et al. Power dosage form of insulin for nasal administration. J Control Release. 1984, 1: 15–22.
8.    Lehr CM, Bouwstra JA, Kok W, et al. Effects of the mucoadhesive polymer polycarbophil on the intestinal absorption of a peptide drug n the rat. J Pharm Pharmacolog. 1992, 44: 402-407.
9.    Borchard G, Lueben HL, Verhoef JC, et al. The potential of  mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan–glutamate and carbomer on epithelial tight junctions in vitro. J Control Release. 1996, 39:131–138.
10.    Schipper NGM, Olsson S, Hoogstraate JA, et al. Chitosans as absorption enhancers for poorly absorbable drugs 2: Mechanism of absorption enhancement. Pharm Res. 1997, 147: 923–929.
11.    Bai JPF, Chang L, Guo  JH. Effects of polyacrylic polymers on the lumenal proteolysis of  peptide drugs in the colon. J Phar Sci. 1995, 84: 1291–1294.
12.    Lueben H, Verhoef  JC, Borchard G, et al. Mucoadhesive  polymers in peroral peptide drug delivery. II. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin. Pharm Res. 1995, 12: 1293–1298.
13.    Visa SP, Khar RK. Controlled Drug Delivery. CBS Publishers & Distributors India, Inc. New Delhi, 1997: 259- 260.
14.    Gandhi  RE,  Robinson JR.  Bioadhesion in drug delivery. Ind  J  Pharm Sci. 1988, 50: 145-152.
15.    Harris D, Robinson  J R.  Drug delivery via the mucous membranes of the oral cavity. J  Pharm  Sci. 1992, 81: 1-10.
16.    Wertz  PW, Squier CA. Cellular and molecular basis of barrier function in oral epithelium. Crit Rev Ther Drug Carr Sys. 1991, 8: 237-269.
17.    Squier  CA, Cox P, Wertz PW. Lipid content and water permeability of skin and oral mucosa. The J Invest Dermat. 1991, 96: 123-126.
18.    Squier CA, Wertz PW. Structure and function of the oral mucosa and implications for drug delivery. In. Rathbone MJ. eds.  Oral Mucosal Drug Delivery. Marcel Dekker USA, Inc. New York, 1996: 1-26.
19.    Galey WR, Lonsdale HK, Nacht S. The in vitro permeability of skin and buccal mucosa to selected drugs and tritiated water. J Invest Dermat. 1976, 67: 713-717.
20.    Amir HS. Buccal Mucosa As A Route For Systemic Drug Delivery: A Review. J Pharm Pharmaceut Sci. 1998, 1: 15-30.
21.    Gandhi  RB,  Robinson  JR. Oral cavity as a site for bioadhesive drug delivery. Adv Drug Del Rev. 1994, 13: 43-74.
22.    Squier CA, Hall BK. The permeability of mammalian non-keratinized oral epithelia to horseraddish peroxidase applied in vivo and in vitro. Arch Oral Biol. 1984, 29: 45-50.
23.    Tabak LA, Levine MJ, Mandel ID, et al, Role of salivary mucins in the protection of the oral cavity. J Oral Pathol. 1982, 11: 1-17.
24.    Rathbone M. Drummond  B. Tucker I. Oral cavity as a site for systemic drug delivery. Adv  Drug Del Rev. 1994, 13: 1-22.
25.    Edgar  WM. Saliva: its secretion, composition and functions. Br Dent J. 1992, 172: 305-312.
26.    Hδgerstrφm H, Edsman K, Strψmme M. Low-frequency dielectric spectroscopy as a tool for studying the compatibility between pharmaceutical gels and mucus tissue. J Pharm Sci, 2003, 92: 1869-1881.
27.    Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005, 57: 1556-1568.
28.    Dodou D, Breedveld P, Wieringa P. Mucoadhesives in the gastrointestinal tract: Revisiting the literature for novel applications. Eur J Pharm Biopharm. 2005, 60: 1-16.
29.    Kinloch AJ. The science of adhesion. J Mater Sci. 1980,15: 2141-2166.
30.    Jimιnez-Castellanos MR, Zia H, Rhodes CT. Mucoadhe-sive drug delivery systems. Drug Dev Ind Pharm. 1993, 19: 143-194.
31.    Boddupalli BM, Mohammed ZN, Nath RA, et al. Mucoadhesive drug delivery system: An overview. J Adv Pharm Tech Res. 2010, 1: 381-387.
32.    Tiwari D, Goldman D, Sause  R, et al. Evaluation of polyoxyethylene homopolymers for buccal bioadhesive drug delivery device formulations. AAPS Pharm Sci. 1999, 1: E13.
33.    Gu J-M, Robinson JR, Leung SHS. Binding of acrylic polymers to mucin/epithelial surfaces: structure–property relationships. Crit Rev Ther Drug Carr  Syst. 1998, 5: 21–67.
34.    Solomonidou D, Cremer K,  Krumme M,  et al. Effect of carbomer concentration and degree of neutralization on the mucoadhesive properties of polymer films. J Biomater Sci Polym Ed. 2001, 12: 1191–1205.
35.    Forstner JF. Intestinal mucins in health and disease. Digestion. 1978, 17: 234–263.
36.    Ho NFH, Barsuhn CL, Burton PS, et al. Routes of delivery: case studies. (3) Mechanistic insights to buccal delivery of proteinaceous substances. Adv  Drug Deliv Rev. 1992, 8: 197–235.
37.    Ishida  M,  Nambu  N, Nagai  T. Mucosal dosage form of  lidocaine for toothache using hydroxypropyl cellulose and carbopol. Chem Pharm Bull. 1982, 30: 980-984.
38.    Collins  AEM,  Deasy PB,  Mac CDJ, et al. Evaluation of a controlled release compact containing tetracycline hydrochloride bonded to tooth for the treatment of periodontal disease. Int  J  Pharm. 1989, 51: 103-114.
39.    Elkayam  R, Friedman  M,  Stabholz  A, et al. Sustained release device containing minocycline for local treatment of periodontal disease. J Control Rel. 1988, 7: 231-236.
40.    Samaranayake  L,  Ferguson  M.  Delivery of antifungal agents to the oral cavity. Adv Drug Del  Rev. 1994, 13: 161-179.
41.    Nagai  T.  Adhesive topical drug delivery system. J Control  Rel. 1985, 2: 121-134.
42.    Nagai  T, Machida Y. Mucosal adhesive dosage forms. Pharm  Int. 1985, 2: 196-200.
43.    Aungst BJ, Rogers NJ. Comparison of the effects of various transmucosal absorption promoters on buccal insulin delivery Int  J  Pharm. 1989, 53: 227-235.
44.    Siegel IA, Gordon  HP.  Surfactant-induced increase of permeability of rat oral mucosa to non-electolytes in vivo. Arch Oral Biol. 1985, 30: 43-47.
45.    Shojaei AH,  Li  X. In vitro permeation of acyclovir through porcine buccal mucosa. Proceed  Int  Symp Control  Rel  Bioact Mater. 1996, 23: 507-508.
46.    Shojaei AH,  Li  X.  Determination of transport route of acyclovir across buccal mucosa. Proceed  Int  Symp  Control  Rel  Bioact  Mater. 1997, 24: 427-428.
47.    Manganaro AM, Wertz  PW. The effects of permeabilizers on the in vitro penetration of propranolol through porcine buccal epithelium. Mil Med. 1996, 161: 669-672.
48.    Gandhi  R,  Robinson  J. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J  Pharm. 1992, 85: 129-140.
49.    Hoogstraate  AJ, Verhoef JC, Tuk B, et al. Buccal delivery of fluorescein isothiocyanate-dextran 4400 and the peptide drug buserelin with glycodeoxycholate as an absorption enhancer in pigs. J Control Rel. 1996, 41: 77-84.
50.    Wolany GJM, Munzer J, Rummelt A, et al. Buccal absorption of sandostatin (octreotide) in conscious beagle dogs. Proceed Intern  Symp Control  Rel Bioact Mater. 1990, 17: 224-225.
51.    Nakane S, Kakumoto M, Yulimatsu K, et al. Oramucosal delivery of LHRH: Pharmacokinetic studies of controlled and enhanced transmucosal permeation. Pharm Dev  Tech. 1996, 1: 251-259.
52.    Steward  A,  Bayley  DL, Howes  C. The effect of enhancers on the buccal absorption of hybrid (BDBB) alpha-interferom. Int  J  Pharm. 1994, 104: 145-149.
53.    Senel S, Hoogstraate AJ, Spies F, et al. Enhancement of in vitro permeability of porcine buccal mucosa by bile salts: kinetic and histological studies. J Control Rel. 1994, 32: 45-56.
54.    Hoogstraate  AJ,  Senel S,  Cullander  C, et al. Effects of bile salts on transport rates and routes of FTIC-labelled compounds across porcine buccal epithelium in vitro. J  Control  Rel. 1996,  40: 211-221.
55.    Aungst  BJ, Rogers NJ. Site dependence of absorption-promoting actions of Laureth-9, Na salicylate, Na2EDTA, and Aprotinin on rectal, nasal, and buccal insulin delivery. Pharm Res. 1988, 5: 305-308.
56.    Aungst  BJ.  Site-dependence and structure-effect relationships for alkylglycosides as transmucosal absorption promoters for insulin. Int  J  Pharm. 1994, 105: 219-225.
57.    Kurosaki Y,  Hisaichi S, Hong  L, et al. Enhanced permeability of keratinized oral-mucosa to salicylic acid with 1-dodecylacycloheptan-2-one (Azone). In vitro studies in hamster cheek pouch. Int  J  Pharm. 1989, 49: 47-55.
58.    Siegel  IA, Gordon  HP.  Effects of surfactants on the permeability of canine oral mucosa in vitro. Tox  Lett. 1985, 26: 153-157.
59.    Kurosaki  Y,  Hisaichi S, Hamada C, et al. Effects of surfactants on the absorption of salicylic acid from hamster cheek pouch as a model of keratinized oral mucosa. Int  J  Pharm. 1988, 47: 13-19.
60.    Siegel  IA,  Izutsu  KT, Watson  E. Mechanisms of non-electrolyte penetration across dog and rabbit oral mucosa in vitro. Arch Oral Biol. 1981, 26: 357-361.
61.    Oh  CK,  Ritschel  WA. Biopharmaceutic aspects of buccal absorption of insulin. Meth  Find Exp  Clin  Pharmacol. 1990, 12: 205-212.
62.    Coutel-Egros  A, Maitani Y, Veillard M, et al. Combined effects of pH, cosolvent and penetration enhancers on the in vitro buccal absorption of propranolol through excised hamster cheek pouch. Int  J  Phar. 1992, 84: 117-128.
63.    Zhang J , Niu  S, Ebert C, et al. An in vivo dog model for studying recovery kinetics of the buccal mucosa permeation barrier after exposure to permeation enhancers: apparent evidence of effective enhancement without tissue damage. Int  J  Pharm.1994,101: 15-22.
64.    Aungst BJ,  Rogers NJ, Shefter E. Comparison of nasal, rectal, buccal, sublingual and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. The J  Pharmacol Exp  Ther. 1988, 244: 23-27.
65.    Ishida  M,  Machida Y, Nambu  N, et al. New mucosal dosage form of insulin. Chem  Pharm  Bull. 1981, 29: 810-816.
 66. Park K, Park H. Test methods of bioadhesion, Bioadhesive drug delivery systems. (Boca Raton: CRC Press). 1990, 543-584.
67. McCarron PA, Donnelly RF, Zawislak A, et al. Evaluation of a Water- soluble Bioadhesive patch for photodynamic therapy of vulval lesions. Int J Pharm. 2005, 293: 11-23.
68. McCarron PA, Woolfson AD, Donnelly RF, et al. Influence of plasticiser type and storage conditions on the properties of  poly(methyl vinyl ether-co-maleic anhydride) bioadhesive films. J Appl Polym Sci. 2004, 91: 1576-1589.
69.  McCarron PA, Donnelly RF, Zawislak A, et al. Design and evaluation of a water-soluble bioadhesive patch formulation for cutaneous delivery of 5-aminolevulinic acid to superficial neoplastic lesions. Eur J Pharm Sci. 2006, 27: 268-279.
70.  Donnelly RF, McCarron PA,  Zawislak AA, et al. Design and physicochemical characterisation of a bioadhesive patch for dose-controlled topical delivery of imiquimod. Int J Pharm. 2006, 307: 318-325.
71. Rahamatullah T, Martin J,  Woolfson AD, et al. Mucoadhesive drug delivery Systems. J Pharma  Bio-allied Sci. 2011, 3: 89-100.
72. Hassan EE, Gallo JM. A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm Res. 1990, 7: 491-495.
73. Rossi S, Bonferoni MC, Lippoli G, et al. Influence of mucin type on polymer-mucin rheological interactions. Biometerials. 1995, 16: 1073-1079.
74. Hagerstrom H, Paulsson M, Edsman K. Evaluation of mucoadhesion for two polyelectrolyte gels in simulated physiological conditions using a rheological method. Eur J Pharm Sci. 2000, 9: 301-309.
75. Rossi S, Ferrari F, Bonferoni MC, et al. Characterization of chitosan hydrochloride--mucin rheological interaction: Influence of polymer concentration and polymer: Mucin weight ratio. Eur J Pharm Sci. 2001, 12: 479-      485.
76. Hagerstrom H, Edsman K. Limitations of the rheological mucoadhesion method: The effect of the choice of conditions and the rheological synergism parameter. Eur J Pharm Sci. 2003,18: 349-357.
77. Ch′ng HS, Park H, Kelly P, et al. Bioadhesive polymers as platforms for oral controlled drug delivery. II Synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. J Pharm Sci. 1985, 74: 399-405.
78. Davis SS. The design and evaluation of controlled release systems for the   gastro-intestinal tract. J Control Release. 1985, 2: 27-38.
79. Christian K, Karin A, Melanie G, et al. In vivo determination of the time and location of mucoadhesive drug delivery systems disintegration in the gastrointestinal tract. Magn Reson Imaging  2008, 26: 638-643.
80.    Dowty ME,  Knuth  KE,  Irons  BK, et al. Transport of thyrotropin releasing  hormone in rabbit buccal mucosa in vitro. Pharm Res. 1992, 9: 1113-1122.           
81.    Hill MW, Squier CA. The permeability of oral palatal mucosa maintained in                  organ culture. J  Anat. 1979. 128: 169-178.
82.    Tavakoli-Saberi MR, Audus  KL. Cultured buccal epithelium: an in vitro model derived from the hamster pouch for studying drug transport and metabolism. Pharm  Res. 1989, 6: 160-162.
83.    Tavakoli-Saberi MR, Williams A,  Audus  KL.  Aminopeptidase activity in human buccal epithelium and primary cultures of hamster buccal epithelium. Pharm  Res. 1989, 6: S-197.
84.    Leipold  HR,  Quadros  E. Nicotine permeation through buccal cultures. Int Symp Control  Rel  Bioact  Mater. 1993, 20: 222-243.
85.    Beckett AH, Triggs EJ. Buccal absorption of basic drugs and its application as an in vivo model of passive drug transfer through lipid membranes. J Pharm Pharmacol. 1967, 19: 31S-41S.
86.    Schurmann W, Turner P.  A membrane model of the human oral mucosa as derived from buccal absorption performance and physicochemical properties of the beta-blocking drugs atenolol and propranolol. J  Pharm  Pharmacol. 1978, 30: 137-147.
87.    Tucker IG.  A method to study the kinetics of oral mucosal drug absorption from solutions. J  Pharm  Pharmacol. 1988, 40: 679-683.
88.    Barsuhn CL, Olanoff  LS,  Gleason DD, et al. Human buccal absorption of flubriprofen. Clin Pharmacol Ther. 1988, 44: 225-231.
89.    Gonzalez-Younes I, Wagner  JG,  Gaines  DA.  Absorption of flubriprofen through human buccal mucosa. J Pharm Sci. 1991, 80: 820-823.
90.    Benes  L. Melatonin and the pineal gland-From basic science to clinical application. (Elsevier Science Publishers). 1993, 347-350.
91.    McQuinn  RL,  Kvam  DC,  Maser MJ, et al. Sustained oral mucosal delivery in human volunteers of buprenorphine from thin non-eroding mucoadhesive polymeric disks. J Control  Rel. 1995, 34: 243-250.
92.    Benes L. Transmucosal, oral controlled-release, transdermal drug administration in human subjects: A crossover study with melatonin. J Pharm Sci. 1997, 86: 1115-1119.
93.    Veillard  MM, Longer M A, Martens TW, et al. Preliminary studies of oral mucosal delivery of peptide drugs. J Control Rel. 1987, 6: 123-131.
94.    Yamahara H, Lee VH. Drug Metabolism in the Oral Cavity. Adv  Drug Del Rev. 1993, 12: 25-39.
95.    Kurosaki Y, Hisaichi S, Nakayama T, et al. Enhancing effect of 1-dodecylazacycloheptan-2-one (Azone) on the absorption of salicyclic acid from keratinized oral mucosa and the duration of enhancement in vivo. Int  J  Pharm. 1989, 51: 47-54.
96.    Tanaka  M,  Yanagibashi N, Fukuda  H, et al. Absorption of salicylic through the oral mucous membrane of hamster cheek pouch. Chem Pharm Bull. 1980, 28: 1056-1061.
97.    Siegel  IA, Gordon  HP. Surfactant-induced alterations of permeability of rabbit oral mucosa in vitro. Exp Mol Path. 1986, 44: 132-137.
98.    Dowty  ME,  Knuth  KE,  Robinson  JR. Enzyme characterization studies on the rate-limiting barrier in rabbit buccal mucosa. Int J Pharm. 1992, 88: 293-302.
99.    Mehta  M,  Kemppainen BW,  Staffford  RG.  In vitro penetration of tritium-labelled water (THO) and [3H]PbTx-3 (a red tide toxin) through monkey buccal mucosa and skin. Tox  Lett. 1991,  55: 185-194.
100. Lesch CA,  Squier CA,  Cruchley  A, et al. The permeability of human oral mucosa and skin to water. J  Dent  Res. 1989, 68: 1345- 1349
101.    Quadros  E,  Cassidy  J,  Gniecko  K, et al. Buccal and colonic absorption of CGS 16617, a novel ACE inhibitor. J  Control  Rel. 1991, 19: 77-86.
102.    Squier  CA,  Hall  BK.  The permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier. The J  Invest  Dermat. 1985, 84: 143-152.
103.    Hoogstraate  AJ,  Cullander  C,  Nagelkerke  JF, et al. Diffusion rates and transport pathways of FITC-labelled model compounds through buccal epithelium. Proceed  Int  Symp  Control  Rel  Bioact  Mater. 1993, 20: 234-235.
104.    Hoogstraate  AJ,  Bodde  HE,  Cullander  C, et al. Diffusion rates and transport pathways of FITC-labelled model compounds through buccal epithelium. Pharm Res. 1992, 9: S-188.
105.    Collins  P,  Laffoon  J,  Squier  CA. Comparative study of porcine oral   epithelium. J Dent  Res.  1981, 60: 517-543.
106.    Yang X,  Robinson JR. Bioadhesion in Mucosal Drug Delivery. In: Okano T.  eds. Biorelated Polymers and Gels. London: Academic UK, Inc. London, 1998: 546-612.
107.    Jimenez-Castellanos MR,  Zia H,  Rhodes CT. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 1993,19: 143-194.
108.    Duchene D, Touchard F, Peppas NA. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Dev Ind Pharm. 1988, 14: 283-318.
109.    Wake WC. Adhesion and the Formulation of Adhesives. London: Applied Science Publishers UK, Inc. London, 1982: 187-232.
110.    Smart JD, Nicholls TJ, Green KL, et al. Lectins in Drug Delivery: a study of the acute local irritancy of the lectins from Solanum tuberosum and helix pomatia. Eur J Pharm Sci. 1999, 9: 93-98.
111.    Naisbett B, Woodley J. The potential use of tomato lectin for oral drug delivery.  Int J Pharm. 1994, 107: 223-230.
112.    Nicholls TJ, Green KL, Rogers DJ, et al. Lectins in ocular drug delivery. An investigation of lectin binding sites on the corneal and conjunctival surfaces.     Int J Pharm. 1996, 138: 175-183.
113. Hornof M, Weyenberg W. Ludwig A, Bernkop-Schnurch A. A mucoadhesive ophthalmic insert based on thiolated poly(acrylic) acid: Development and in vivo evaluation in human volunteers. J Control Rel. 2003, 89: 419-428.
114.Albrecht K, Zirm EJ, Palmberger TF, et al. Preparation of thiomericroparticles and in vitro evaluation of parameters influencing their mucoadhesive   properties.      Drug Dev Ind Pharm. 2006, 32: 1149-1157.
115.Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977, 31: 107-133.
116. Mrhy M, Eanrh P, Arunkumar SVV,  et al. Buccal Drug Delivery-A Technical Approach. J Drug Del Thera. 2012, 2: 26-33.
117. Roey JV,  Haxaire M,  Kamya M,  et al. Comparative efficacy of topical therapy with a slow-release mucoadhesive buccal tablet containing miconazole nitrate versus systemic therapy with ketoconazole in HIV-positive patients with oropharyngeal candidiasis. J  Acquir  Immune Defic  Syndr.  3004, 35: 144–150.
118. Miller SC, Donovan MD. Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits. Int  J  Pharm. 1982, 12: 147–152.
119. Wong CF, Yuen KH, Peh KK. Formulation and evaluation of  controlled  release Eudragit buccal patches. Int  J  Pharm. 1999, 178: 11–22.



Subscribe to Pharmatutor Alerts by Email



Subscribe to RSS headline updates from:
Powered by FeedBurner